<u>Supplemental Appendix A</u> List of Disputed Issues in Sample Minimum of one MID onset over an issue-dyad

Dyad	Dispute Name	Starting Challenger	Overall Start	Overall End	Issue- Dyads	Sample MIDs	$\mathbf{Ongoing?}^{\dagger}$
TERRITORIAL	DISPUTES (1885-2000) [*]		-	-			
USA-UKG	Alaska	UKG	1872	1903	1	1	
NIC-COL	San Andrés y Providencia	NIC	1900	2001	1	2	Y
GUA-UKG	Belize	GUA	1868	1981	1	5	
BLZ-GUA	Belize	GUA	1981	2001	1	2	Y
GUA-SAL	Cordillera Monte Cristo	GUA	1935	1938	1	1	
HON-SAL	Bolsones	SAL	1899	1992	1	1	
HON-NIC	Cayo Sur - Media Luna	NIC	1998	2001	1	1	Y
COL-VEN	Los Monjes	COL	1951	2001	1	3	Y
COL-PER	Loreto	PER	1839	1935	1	1	
VEN-GUY	Essequibo	VEN	1966	2001	1	7	Y
GUY-SUR	Corentyn/New River Triangle	SUR	1975	2001	1	2	Y
ECU-PER	Oriente-Mainas	ECU	1854	1998	2	14	
BOL-PAR	Chaco Boreal	BOL	1878	1938	1	10	
PER-CHL	Tacna-Arica	CHL	1879	1929	1	2	
CHL-ARG	Los Andes	CHL	1896	1904	1	1	
CHL-ARG	Beagle Channel	ARG	1904	1985	1	19	
ARG-URU	Río de La Plata	ARG	1882	1973	1	1	
ARG-UKG	Falkland Is. and Dependencies	ARG	1841	2001	1	3	Y
UKG-SPN	Gibraltar	SPN	1816	2001	1	1	
USA-RUS	West Berlin	RUS	1948	1971	1	2	
GFR-GDR	West Berlin	GDR	1958	1972	1	2	
Total: Terri	tory				22	81	
RIVER DISPUT	ES (1900-2000)		-	-	-		-
NIC-COS	San Juan River	COS	1982	2001	1	1	Y
ARG-URU	Uruguay River (La Plata)	ARG	1900	1973	1	1	
SYR-ISR	Jordan River	SYR	1951	1966	2	2	
SYR-ISR	Hasbani-Baniyas (Jordan)	ISR	1964	1966	1	1	
TUR-SYR	Euphrates River	SYR	1964	2001	1	2	Y
IRN-IRQ	Shatt al-Arab	IRN	1932	1990	5	9	
Total: River	^				11	16	

(continued from previous page)

Dyad	Dispute Name	Starting Challenger	Overall Start	Overall End	Issue- Dyads	Sample MIDs	$\mathbf{Ongoing?}^{\dagger}$
MARITIME DIS	SPUTES (1900-2000)						
USA-CAN	Dixon Entrance	CAN	1920	2001	1	1	Y
CAN-USA	US-Canada Pacific Salmon	CAN	1914	1999	1	3	
USA-RUS	Bering Sea	RUS	1900	2001	1	2	Y
USA-RUS	Mid-Atlantic Coast	RUS	1965	1990	1	1	
CAN-FRN	St. Pierre and Miquelon	CAN	1971	2001	1	2	Y
CAN-SPN	Turbot War	SPN	1994	1995	1	1	
HON-NIC	Gulf of Fonseca	HON	1912	2001	1	5	Y
HON-NIC	HON-NIC Caribbean Sea	NIC	1999	2001	1	1	Y
MEX-GUA	Mexico-Guatemala Fishing	MEX	1956	1976	1	1	
USA-PAN	Panama Canal Zone Outlets	USA	1959	1995	1	1	
USA-ECU	Ecuadorian Pacific Claims	USA	1952	2001	1	8	Y
USA-PER	Peruvian Pacific Claims	USA	1947	2001	1	4	Y
USA-CHL	Chilean Pacific Claims	USA	1952	1986	1	1	
TRI-VEN	Gulf of Paria	VEN	1962	2001	1	3	Y
COL-VEN	Gulf of Venezuela	COL	1955	2001	1	4	Y
GUY-SUR	Courantyne	SUR	1975	2001	1	1	Y
BRA-FRN	Lobster War	FRN	1963	1964	1	1	
CHL-ARG	Beagle Channel	ARG	1900	1985	1	5	
ARG-BUL	Argentina-USSR Fishing Disp.	BUL	1967	1986	1	1	
ARG-RUS	Argentina-USSR Fishing Disp.	RUS	1967	1986	1	2	
ARG-UKG	Falklands	ARG	1966	2001	1	4	Y
UKG-ICE	Cod War (12 miles)	UKG	1958	1961	1	2	
UKG-ICE	Cod War (50 miles)	UKG	1971	1973	1	1	
UKG-ICE	Cod War (200 miles)	UKG	1975	1976	1	1	
UKG-DEN	Faroe Islands/Greenland	DEN	1958	1964	1	1	
NOR-DEN	Jan Mayen	DEN	1958	1997	1	2	
FRN-SPN	Bay of Biscay	SPN	1976	2001	1	1	Y
IRE-SPN	Irish Box	SPN	1984	2001	1	2	Y
GRC-TUR	Aegean Sea	GRC	1964	2001	1	12	Y
POL-RUS	Sea of Okhotsk	RUS	1991	2001	1	2	
RUS-SWD	Baltic Sea	SWD	1950	1989	1	1	
RUS-UKR	Black Sea	UKR	1993	2001	1	1	Y
Total: Mari	time				32	78	
Total: River	r + Maritime				43	94	

† Ongoing as of 12/2001* To obtain sufficient data, territorial issue-dyads starting before 1885 must experience two MID onsets.

Supplemental Appendix B Variable Descriptive Statistics

SUPPLEMENTAL TABLE 1. Descriptive Statistics								
	Mean	St. Dev.	Min	Max				
Main Variables								
Dispute time (mths.)	409.046	405.616	0.008	2042				
Mil. length (mths.)	3.760	8.794	0.033	97.133				
Instruments								
Multilateral claim	0.429	0.496	0	1				
Multilateral MID	0.046	0.209	0	1				
Third party alliance	0.669	0.472	0	1				
Power ratio	0.743	0.222	0.159	0.999				
<u>Controls</u>								
Democracy (mean)								
@ TIME	2.346	5.258	-9	10				
@ LENGTH	2.763	5.568	-9	10				
Interdependence (mean)								
@ TIME	0.215	0.135	0.039	0.855				
@ LENGTH	0.223	0.134	0.037	0.684				
Shared IGO mshps.								
@ TIME	32.314	17.725	0	68				
@ LENGTH	36.623	18.524	0	75				
Contiguity								
@ TIME	0.760	0.428	0	1				
@ LENGTH	0.766	0.425	0	1				
Major power dyad?								
@ TIME	0.280	0.450	0	1				
@ LENGTH	0.280	0.450	0	1				
Militarization count	4.629	4.572	1	19				
Linked issue	0.503	0.501	0	1				
Territorial issue?	0.463	0.500	0	1				

SUPPLEMENTAL TABLE 1. Descriptive Statistics

N = 175 for all variables (aggregate estimation sample)

Supplemental Appendix C

The Importance of the SEM Estimation Strategy

We would not have uncovered the counterintuitive α_{TIME} results, or the empirical support for Hypotheses 1 and 2, if we had used a standard Weibull model to estimate α_{TIME} . Recall that I argue that DISPUTE TIME is endogenous, as it is a function of expectations about MILITARIZATION LENGTH. However, also recall that standard Weibull models treat DISPUTE TIME as exogenous, which will yield biased estimates of α_{TIME} .

SUPPLEMENTAL TABLE 2. E	SUPPLEMENTAL TABLE 2. Estimation with SEM vs. Estimation with Standard Weibulls					
	Model A	Model 1	Model B	Model 3		
	<i>Territory</i> Weibull	<i>Territory</i> SEM Results	<i>Mar./River</i> Weibull	<i>Mar./River</i> SEM Results		
Militarization Length						
$lpha_{ ext{TIME}}$	0.186*	0.291**	-0.186**	-0.101		
	(0.137)	(0.143)	(0.088)	(0.095)		
Multilateral MID [†]	-1.049	-1.220	-1.494	-1.414		
	(0.847)	(0.880)	(0.974)	(0.979)		
Third party alliance [†]	0.365	0.276	0.277	0.119		
	(0.633)	(0.650)	(0.647)	(0.651)		
Power ratio ^{\dagger}	-2.250	-2.272	-0.924	-1.112		
	(1.399)	(1.401)	(1.371)	(1.369)		
Democracy (mean)	-0.126***	-0.141***	-0.040	-0.023		
	(0.046)	(0.047)	(0.046)	(0.047)		
Interdependence (mean)	4.389***	4.564***	3.892**	4.129**		
	(1.507)	(1.493)	(1.714)	(1.724)		
Shared IGO mshps.	-0.007	-0.006	-0.031	-0.036*		
	(0.015)	(0.015)	(0.021)	(0.021)		
Contiguity	1.607	1.943	0.194	0.066		
	(1.481)	(1.534)	(0.597)	(0.600)		
Major power dyad?	1.187	1.221	-1.108	-1.359*		
	(1.146)	(1.179)	(0.765)	(0.788)		
Militarization count	-0.006	-0.038	0.247**	0.217**		
	(0.056)	(0.061)	(0.101)	(0.103)		
Linked issue	-1.605***	-1.712***	0.791	0.824		
	(0.414)	(0.425)	(0.510)	(0.518)		
Constant	0.278	-0.296	1.623	1.854		
	(1.962)	(1.987)	(1.414)	(1.427)		
λ_1^{-1}	0.761***	0.757***	0.641***	0.639***		
	(0.069)	(0.069)	(0.052)	(0.053)		

(continued from previous page)

Dispute Time				
$lpha_{ m MIL}$		-0.077*		-0.130*
		(0.056)		(0.093)
Multilateral claim ^{\dagger}		-0.753***		-0.705**
		(0.206)		(0.347)
Democracy (mean)		0.007		-0.049
• · · · ·		(0.025)		(0.034)
Interdependence (mean)		-1.244		-0.217
		(0.950)		(1.301)
Shared IGO mshps.		0.009		-0.005
-		(0.006)		(0.012)
Contiguity		-2.046***		1.816***
		(0.621)		(0.531)
Major power dyad?		-0.865		0.731
		(0.581)		(0.562)
Militarization count		0.073***		0.301***
		(0.023)		(0.096)
Linked issue		0.095		-0.542
		(0.199)		(0.391)
Constant		7.781***		3.833***
		(0.828)		(0.824)
λ_2^{-1}		1.397***		0.714***
-		(0.135)		(0.062)
$H_0: \alpha_{\text{TIME}} = \alpha_{\text{MIL}} (p, \text{Wald}_{1\text{T}})$		0.046**		0.432
N	81	81	94	94
Log-Likelihood	-151.627	-258.112	-189.406	-379.228

* = $p \le 0.10$, ** = $p \le 0.05$, *** = $p \le 0.01$, two-tailed for all variables except α 's (one-tailed) † = instruments; λ^{-1} : inverse of Weibull shape parameter. Unclustered standard errors reported in parentheses.

To illustrate this point, Supplemental Table 2 shows the model results when they are estimated using a standard Weibull. Model A contains the standard Weibull results for the sample of disputes over territorial issues, which is comparable to Model 1 in the main results table. When the α 's from the SEM are oppositely signed, as they are in Model 1, the Weibull estimate of α_{TIME} will be attenuated toward zero, making the effect seem smaller than it truly is (Hays and Kachi 2009, 10). Model A shows this attenuation bias clearly. α_{TIME} is weakly significant, and its effect is smaller in magnitude than the SEM's bias-corrected estimate of α_{TIME} .

It is equal to 0.186 in Model A (p = 0.087, one-tailed), compared to 0.291 in Model 1 (p = 0.021, one-tailed).

Model B contains the estimates from the sample of disputes over maritime and river issues, which is comparable to Model 3 in the main results table. When the α 's from the SEM are signed identically, as they are in Model 3, the Weibull estimate of α_{TIME} will be inflated (Hays and Kachi 2009, 10). The estimate will be larger in magnitude when compared to the parameter's unbiased estimate. The inflationary bias in α_{TIME} is evident in Model B. The model's coefficient, -0.186, is larger in magnitude than the coefficient in Model 3, where $\alpha_{\text{TIME}} = -0.101$. Also, α_{TIME} is statistically significant in Model B (p = 0.018, one-tailed), whereas it is not in Model 3 (p = 0.145, one-tailed).

While α_{TIME} 's statistical significance is not contrary to Hypothesis 2, it leads to an inaccurate substantive conclusion. Model B's results suggest that the passage of time has a beneficial effect in maritime and territorial disputes. However, we know from Model 3 that time has a neutral effect. This highlights one of the dangers of inflation bias. Inflated estimates can induce Type I errors—we may reject the null hypothesis when we should not. The dangers of attenuated estimates are less egregious, as attenuation can induce Type II errors—we do not reject the null when we should—which is still incorrect, but the lesser of the two evils. *Ex ante*, we cannot know whether the bias in α_{TIME} will be attenuating or inflationary. It is evident only when we examine the results from the SEM. This highlights the importance of the estimation strategy, and how pivotal it is for obtaining accurate estimates of α_{TIME} .

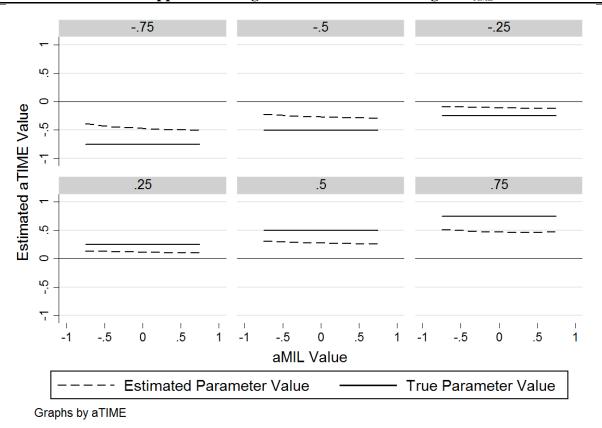
6

Supplemental Appendix D Regarding Selection Bias

In the main text, I make the assertion that omitting peaceful issue-dyads biases me against finding evidence supportive of my hypotheses. This appendix provides the backing for my claim. Using Monte Carlo simulations, I show that the omission of these dyads does indeed produce a bias against finding support for both Hypothesis 1 ($\alpha_{\text{TIME}} > 0$) and for Hypothesis 2 ($\alpha_{\text{TIME}} \leq 0$).

To begin, I generate simulated data using 7 different values of α_{TIME} and 7 different values α_{MIL} , resulting in 49 possible combinations.¹ I refer to these values as the "true" values, for discussion purposes. The data generating processes take the following form:

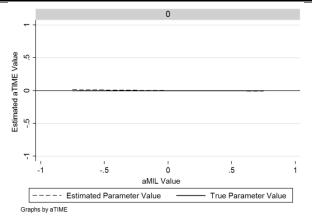
$y_i = \alpha_{\text{TIME}} y_j + 0.5x - 3z_1 + \lambda_1^{-1} \epsilon_1$	$\epsilon_1 \sim TIEV(0, \lambda_1)$
$y_i = \alpha_{\text{MIL}} y_i + 4x + 6z_2 + \lambda_2^{-1} \epsilon_2$	$\epsilon_2 \sim TIEV(0, \lambda_2)$


After I generated the data (N = 500), I impose a censoring rule. If an anticipatory, gametheoretic logic holds, it suggests that we will rarely observe long militarization lengths (y_i), because states will generally avoid such costly engagements. I keep only observations whose y_i values fall at or below y_i 's 50th percentile.² I then estimate the SEM using the remaining 250 observations, to see how the estimates of α_{TIME} would be biased. For each of the 49 possible

¹ I used 0.5, 1, and 1.5 as the possible values for the two shape parameters. The patterns I discuss hold regardless of λ_1 's or λ_2 's value.

² The number of observations and the censoring percentage were chosen based on the properties of my full dataset containing all issue-dyad DISPUTE TIMEs, regardless of whether a militarization occurred or not ($N = \sim 360$). Only 175 DISPUTE TIMEs experience a militarization (i.e., my SEM estimation sample; 48.6%), meaning that approximately 51.4% of my observations are censored.

parameter combinations for α_{TIME} and α_{MIL} , I repeat this procedure 1000 times and average the estimated parameters across all the repetitions.


Supplemental Figures 1 and 2 illustrate the main output from the simulations. The header of each graph reports α_{TIME} 's true value, which is also plotted as a solid line; the two figures display seven graphs in total. The dotted line represents the estimated value for α_{TIME} (*y*-axis), when averaged across the 1000 repetitions, for the seven different true values of α_{MIL} .

Supplemental Figure 1. Effect of Censoring on α_{TIME}

The shaded title of each individual graph denotes the "true" value of α_{TIME} used in the simulation.

Supplemental Figure 2. Effect of Censoring on α_{TIME} , $\alpha_{\text{TIME}} = 0$

We can evaluate the bias in terms of the position of the various lines. Of interest to us is where the dotted line is (α_{TIME} 's estimated value), in relation to: (1) the solid line, the true value of α_{TIME} for a given scenario; and (2) the *x*-axis, where α_{TIME} 's estimated value is equal to 0 (i.e., no effect). There are two possibilities:

- 1. If the dotted line appears between the solid line and the *x*-axis, then the estimate has attenuation bias. α_{TIME} 's estimate is closer to zero than it is in truth. This biases us *against* finding statistical significance.
- 2. If the dotted line is farther away from the *x*-axis than the solid line, then the estimate has inflation bias. α_{TIME} 's estimate is further away from zero than it is in truth. This biases us *toward* finding statistical significance.

Of the two, the second possibility is far more dangerous. We would conclude that the estimate is statistically different from zero, when in truth, it is not.

Two things are evident from the figures. First, for all non-zero values of α_{TIME} , the estimate of α_{TIME} always suffers from attenuation bias. Across all six graphs in Supplemental Figure 1, the dotted line always appears between the solid line and the *x*-axis. Second, as a corollary, α_{TIME} 's estimate is unaffected by the value of α_{MIL} , though there is some minute variation in the size of the attenuation bias within each graph.

Both suggest that censoring biases us *against* finding support for any hypothesis in which the effect of MILITARIZATION LENGTH on DISPUTE TIME is posited to be non-zero. This is the case for Hypothesis 1, regarding the pernicious effect of DISPUTE TIME in territorial disputes. The fact that I find statistical significance is thus encouraging. The implications are similar for Hypothesis 2, regarding the beneficial/neutral effect of time's passage in maritime and river disputes. The hypothesis suggests either a negative relationship between DISPUTE TIME and MILITARIZATION LENGTH, or no relationship at all. More succinctly, the coefficient should not be positive. Broadly speaking, the same maxim from above holds—we are biased against finding a statistically significant, negative coefficient.

Supplemental Appendix E Robustness Checks

The main results are robust to a number of alternative specifications. Supplemental Table 3 contains abbreviated results for almost a dozen such models. Details about each model's specification are provided in the interpretation key underneath Supplemental Table 3. Here, I provide an overview of the various models.

	SUPPLEMENTAL TABLE 3. Abbreviated Robustness Checks							
Issue		Main	(1)	(2)	(3)	(4)	(5)	
Type		Results	FUNCTFORM	DISTANCE	ALLY	PSETTLE	MILRUNTIME	
	α_{TIME}	0.291**	0.283**	0.287**	0.301**	0.245**	0.352***	
N		(0.143)	(0.143)	(0.174)	(0.145)	(0.146)	(0.126)	
Territory	$lpha_{ m MIL}$	-0.077*	-0.069*	-0.077*	-0.074	-0.026	-0.064*	
err		(0.056)	(0.054)	(0.058)	(0.060)	(0.054)	(0.050)	
Η	$Wald_{1T}$	0.046	0.047	0.081	0.037	0.045	0.006	
	N	81	81	81	81		81	
	α_{TIME}	-0.101	-0.097	-0.106	-0.103	-0.124	-0.081	
/er		(0.095)	(0.093)	(0.099)	(0.097)	(0.100)	(0.094)	
Mar/River	$lpha_{ m MIL}$	-0.130*	-0.131*	-0.127*	-0.129*	-0.100	-0.093	
ar/		(0.093)	(0.084)	(0.094)	(0.094)	(0.094)	(0.095)	
M	$Wald_{1T}$	0.432	0.412	0.451	0.439	0.446	0.471	
	Ν	94	94	94	94	94	94	
		(6)	(7)	(8)	(9)	(10)	(11)	
		DEMSW7	OTHERISS	FMIDCOUNT	DEML	$INTERDEP_L$	STRATRIV	
	α_{TIME}	0.283**	0.273**	0.294**	0.188*	0.268**	0.297**	
Z		(0.145)	(0.146)	· · · ·	(0.130)	(0.147)	(0.148)	
Territory	$lpha_{ m MIL}$	-0.080*	-0.055	-0.080*	-0.056	-0.074*	-0.070	
err		(0.057)	(0.054)	(0.053)	(0.054)	(0.055)	(0.053)	
H	Wald _{1T}	0.056	0.046	0.045	0.130	0.068	0.042	
	<u>N</u>	81	81	81	81	81	81	
	α_{TIME}	-0.100	-0.098	-0.110	-0.123	-0.087	-0.112	
/er		(0.097)	(0.087)	(0.089)	(0.097)	(0.098)	(0.097)	
Riv	$lpha_{ m MIL}$	-0.130*	-0.129*	-0.123*	-0.117	-0.139*	-0.116	
Mar/River		(0.094)	(0.090)	(0.090)	(0.094)	(0.094)	(0.093)	
Μ	$Wald_{1T}$	0.430	0.421	0.466	0.486	0.380	0.491	
	N	94	94	94	94	94	94	

SUPPLEMENTAL TABLE 3. Abbreviated Robustness Checks

(continued from previous page)

		(12) ~threats	(13) WH & E	(14) WH only	
	$\alpha_{ ext{TIME}}$	0.360**		0.311**	
N		(0.156)		(0.152)	
Territory	$\alpha_{ m MIL}$	-0.095*		-0.068	
erri		(0.060)		(0.058)	
Ē	Wald _{1T}	0.025		0.034	
	Ν	79		76	
	α_{TIME}	-0.087	-0.239**	-0.263**	
er		(0.096)	(0.129)	(0.117)	
Riv	$lpha_{ m MIL}$	-0.127	-0.020	0.032	
ar/Riv	$lpha_{ m MIL}$	-0.127 (0.103)	-0.020 (0.077)	0.032 (0.076)	
<u>Mar/River</u>	α_{MIL} Wald _{1T}				

* = $p \le 0.10$, ** = $p \le 0.05$, *** = $p \le 0.01$, one-tailed. Shaded row indicates the key parameter of interest. (2)-(11) are included as regressors in both equations. Main results (used as baseline specifications): Model 1 (territory); Model 3 (maritime/river). Unclustered standard errors reported in parentheses.

Supplemental Table 3 Interpretation Key:

(1). FUNCTFORM: SEM identified off functional form and control variables in the MILITARIZATION LENGTH equation. The variables in z_1 and z_2 are included as regressors in both equations.

(2). DISTANCE: Capital-to-capital distance in miles, logged.

- (3). ALLY: 1 if state pair has defensive, offensive, or neutrality pact in place at t, 0 otherwise.
- (4). PSETTLE: Running count of peaceful settlement attempts over the claim-dyad, to date.
- (5). MILRUNTIME: Time spent in MIDs over this issue-dyad, to date; exchanged for MIDCOUNT.
- (6). DEMSW7: Democratization. Coded 1 if either state has Polity $2 \ge 7$ in *t* and same state had Polity2 < 7 in t 5.
- (7). OTHERISS: Number of other ongoing claims between the two states at t, inspired by Mitchell and Thies (2011).
- (8). FMIDCOUNT: Count of fatal MIDs over this claim-dyad, to date.
- (9). DEM_L: DEMOCRACY; weak-link coding instead of dyadic mean. Lowest Polity2 score in the dyad.
- (10). INTERDEP_L: INTERDEPENDENCE; weak-link coding instead of dyadic mean. Lowest dyadic value of (total dy. trade/state GDP).
- (11). STRATRIV: 1 if state pair are strategic rivals (Thompson and Dreyer 2011)
- (12). ~THREATS: Excludes MIDs that do not escalate beyond threats of force from the sample.
- (13). WH & E: Sample includes disputes from the Western Hemisphere and *all* of Europe only.
- (14). WH ONLY: Sample includes disputes from the Western Hemisphere.

First, the results are not sensitive to the selection of instruments (Supplemental Table 3, (1)). Technically, the SEM can be identified off functional form and off the common set of control variables (x), as the value of the x's in each equation are recorded at different points in time.³ At best, these assumptions are tenuous, which is why I use instruments to identify the SEM. However, by temporarily accepting them, we can include the set of variables in z_1 and z_2 as regressors in *both* equations, allowing us to see if the main results are sensitive to the choice of instruments. The first abbreviated model of Supplemental Table 3 shows that α_{TIME} stays positive and significant in the territorial sample, and stays insignificant in the maritime/river sample.

Second, my argument relies on the implicit assumption that there is a fundamental difference in kind, not degree, between disputes over territorial issues and disputes over maritime and river issues. Hensel et al. (2008) advance an argument as to why this is so. I estimate the SEM on two separate samples of disputed issues on this theoretical basis. However, one potential criticism of this decision relates to the possibility of variation in issue salience *within* these samples. The notion is not at odds with my argument. Nonetheless, it is possible that the supportive evidence of my argument is a product of this within-group heterogeneity in salience.

I assess this possibility by including a measure of within-group salience as a regressor. I use ICOW's issue-salience index, which ranges from 0-12 (Hensel and Mitchell 2007, 16–22), to create a normalized index. The normalization is necessary because the index's components vary by issue type. I calculate issue-specific *z*-scores by computing the index's mean and standard deviation *for each issue type*. Positive values of the normalized index represent disputes of

³ E.g., the value of the control variables is recorded at Figure 1, Point A (or Point C) for the DISPUTE TIME equation, and Figure 1, Point B for the MILITARIZATION LENGTH equation.

greater importance, relative to the average issue of that type. Supplemental Table 4 shows that my main results are largely substantively unaffected by the addition (dark shaded cells).

Finally, I deliberately used as few control variables as possible, in order to reduce the estimating burden on the SEM. Each sample size is somewhat small, and the SEM estimates a number of parameters. I used extant research to choose my controls, but one can imagine additional variables that may also impact MILITARIZATION LENGTH. Examples include the distance between *i* and *j*, whether *i* and *j* are allies, the number of previous peaceful settlement attempts over the dispute, and whether *i* and *j* are engaged in disputes over other issues. Using the main specifications as a baseline, the results are unaltered if I add each variable to the righthand side of both equations (Supplemental Table 3, (2)-(8)). Further, switching to a "weak-link" operationalization of DEMOCRACY or INTERDEPENDENCE has no effect on the results (Supplemental Table 3, (9) and (10), respectively). This is a common way to operationalize these variables in previous research. In addition, the results are unaffected if we exclude militarizations involving only threats of military force from the estimation sample (Supplemental Table 3, (12)). Militarizations involving only threats tend to be extremely short, raising questions about whether my argument would apply to these types of militarizations. My two hypotheses are still supported if I focus solely on militarizations involving additional activities, such as troop mobilizations or border clashes, as I would expect.

	Model 1	With Salience	Model 3	With Salience
	Territory	Territory	Mar./River	Mar./River
Militarization Length – Eq. [2a]				
$lpha_{ m TIME}$	0.291**	0.300*	-0.101	-0.152*
	(0.143)	(0.184)	(0.095)	(0.099)
Multilateral MID [†]	-1.220	-1.053	-1.414	-1.471
	(0.880)	(0.893)	(0.979)	(0.950)
Third party alliance [†]	0.276	0.235	0.119	0.023
	(0.650)	(0.664)	(0.651)	(0.641)
Power ratio ^{\dagger}	-2.272	-2.521*	-1.112	-0.486
	(1.401)	(1.513)	(1.369)	(1.378)
Democracy (mean)	-0.141***	-0.128***	-0.023	-0.024
	(0.047)	(0.049)	(0.047)	(0.046)
Interdependence (mean)	4.564***	4.504***	4.129**	4.632***
	(1.493)	(1.514)	(1.724)	(1.664)
Shared IGO mshps.	-0.006	-0.007	-0.036*	-0.051***
	(0.015)	(0.015)	(0.021)	(0.020)
Contiguity	1.943	1.567	0.066	0.071
	(1.534)	(1.613)	(0.600)	(0.584)
Major power dyad?	1.221	0.850	-1.359*	-1.143
	(1.179)	(1.419)	(0.788)	(0.749)
Militarization count	-0.038	-0.025	0.217**	0.234**
	(0.061)	(0.060)	(0.103)	(0.099)
Linked issue	-1.712***	-1.785***	0.824	0.349
	(0.425)	(0.503)	(0.518)	(0.555)
Normalized Salience Index		-0.072		0.203**
		(0.163)		(0.094)
Constant	-0.296	0.779	1.854	0.694
	(1.987)	(2.751)	(1.427)	(1.474)
λ_1^{-1}	0.757***	0.759***	0.639***	0.663***
	(0.069)	(0.069)	(0.053)	(0.055)

	Within Course Collins on Debugter and Cheele
SUPPLEMENTAL IABLE 4.	Within-Group Salience Robustness Check

<u>spute Time – Eq. [2b]</u>				
$lpha_{ m MIL}$	-0.077*	-0.052	-0.130*	-0.129*
	(0.056)	(0.053)	(0.093)	(0.089)
Multilateral claim [†]	-0.753***	-1.138***	-0.705**	-0.099
	(0.206)	(0.211)	(0.347)	(0.364)
Democracy (mean)	0.007	0.003	-0.049	-0.068**
	(0.025)	(0.023)	(0.034)	(0.034)
Interdependence (mean)	-1.244	-0.280	-0.217	-0.556
	(0.950)	(0.800)	(1.301)	(1.165)
Shared IGO mshps.	0.009	0.024***	-0.005	-0.003
-	(0.006)	(0.007)	(0.012)	(0.011)
Contiguity	-2.046***	-0.853	1.816***	1.615***
	(0.621)	(0.638)	(0.531)	(0.462)
Major power dyad?	-0.865	0.083	0.731	0.885*
	(0.581)	(0.587)	(0.562)	(0.506)
Militarization count	0.073***	0.039*	0.301***	0.240***
	(0.023)	(0.022)	(0.096)	(0.091)
Linked issue	0.095	0.249	-0.542	-1.035***
	(0.199)	(0.171)	(0.391)	(0.368)
Normalized Salience Index		0.234***		0.338***
		(0.061)		(0.084)
Constant	7.781***	4.487***	3.833***	1.395
	(0.828)	(1.135)	(0.824)	(0.957)
λ_2^{-1}	1.397***	1.524***	0.714***	0.771***
-2	(0.135)	(0.146)	(0.062)	(0.067)
$\alpha_{1}: \alpha_{\text{TIME}} = \alpha_{\text{MIL}} (p, \text{Wald}_{1\text{T}})$	0.046**	0.063	0.432	0.446
	81	81	94	9.110
g-Likelihood	-258.112	-251.353	-379.228	-369.57

(continued from previous page)

* = $p \le 0.10$, ** = $p \le 0.05$, *** = $p \le 0.01$, two-tailed for all variables except α 's (one-tailed); † = instruments. λ^{-1} : inverse of Weibull shape parameter. Unclustered standard errors reported in parentheses.

Appendices Works Cited

- Hays, Jude C., and Aya Kachi. 2009. "Interdependent Duration Models in Political Science." Presented at the Annual Meeting of the American Political Science Association, Toronto, ON.
- Hensel, Paul R., and Sara McLaughlin Mitchell. 2007. "Issue Correlates of War Project: User Manual for ICOW Data, Version 1.1." http://www.icow.org (accessed April 27, 2011).
- Hensel, Paul R., Sara McLaughlin Mitchell, Thomas E. Sowers, and Clayton L. Thyne. 2008.
 "Bones of Contention: Comparing Territorial, Maritime, and River Issues." *Journal of Conflict Resolution* 52 (1): 117–143.
- Mitchell, Sara McLaughlin, and Cameron G. Thies. 2011. "Issue Rivalries." *Conflict Management and Peace Science* 28 (3): 230–260.
- Thompson, William R., and David Dreyer. 2011. *Handbook of International Rivalries, 1494-2010*. Washington, DC: CQ Press.